MODEL OPTIMASI PENJADWALAN PENUGASAN KRI KOARMADA I DIKORELASIKAN DENGAN LUAS WILAYAH DAN ANGGARAN

Authors

  • M. Agus Arif Hidayat Sekolah Staf dan Komando Angkatan Laut Author
  • M. AliNugroho Sekolah Staf dan Komando Angkatan Laut Author
  • Basuki Tri Usodo Sekolah Staf dan Komando Angkatan Laut Author

Keywords:

Penjadwalan, Penugasan Kapal, Binary Integer Programming

Abstract

Model Penjadwalan adalah suatu model yang berkaitan dengan kegiatan penugasan yang dikaitkan dengan sejumlah batasan, suatu model yang merupakan suatu peristiwa yang dapat terjadi dalam jangka waktu dan tempat atau lokasi sehingga fungsi tujuan dapat terpenuhi semaksimal mungkin. Dalam hierarki pengambilan keputusan, penjadwalan adalah langkah terakhir sebelum dimulainya suatu operasi. Penjadwalan penugasan KRI di Koarmada I merupakan topik yang menarik untuk dibahas dan diselesaikan dengan menggunakan metode matematika. Proses penjadwalan penugasan KRI di Koarmada I dilakukan untuk menghasilkan JOP/JOG tahunan. Proses ini tidak hanya memerlukan tindak lanjut yang cepat, namun juga memerlukan langkah-langkah yang sistematis. Penjadwalan penugasan yang dilaksanakan Koarmada I saat ini dilakukan secara personel tanpa menggunakan perhitungan matematis. Proses penjadwalan penugasan kapal pada penelitian ini dilakukan dengan pendekatan metode Binary Integer Programming (BIP) dengan tujuan untuk meminimalkan biaya dan memaksimalkan tujuan penugasan kapal. Penjadwalan yang diamati adalah 59 kapal perang melaksanakan operasi selama 52 minggu (1 tahun). Rumusan matematis model BIP terdiri dari satu fungsi tujuan dan tiga fungsi kendala. Kemudian pengembangan model BIP dengan menggunakan Excel Solver lanjutan. Hasil yang diperoleh menunjukkan bahwa model BIP yang diterapkan dalam penjadwalan penugasan Kapal Perang Republik Indonesia adalah cakupan wilayah maksimum yang dicapai adalah 85.839.881 NM2, dari seluruh wilayah operasional sektor I sampai VIII (653.702 NM2). BIP merupakan metode yang tepat digunakan sebagai metode penjadwalan penugasan KRI di Koarmada I.

References

Peraturan Kepala Staf Angkatan Laut Nomor 25 tanggal 24 Oktober 2022 tentang Organisasi Dan Tugas Komando Armada I, pasal 2, 2.

Permenhan RI nomor B/193/ I/2023 tanggal 31 Januari 2023 tentang Perubahan Istilah Minimum Essential Force (MEF) TNI, pasal 3.

Surat Perintah Panglima TNI Nomor Sprin/ 2572 / XII / 2023 tanggal 20 Desember 2023 tentang Direktif Operasi Dalam Negeri TNI TA 2024, 2023.

Undang-Undang Republik Indonesia Nomor 34 tahun 2004 tentang Tentara Nasional Indonesia, pasal 7.

Mohamad Solekhan Ahmadi, Udisubakti Ciptomulyono, “Penjadwalan Penugasan KRI di Kolinlamil Dengan Pendekatan Binary Integer Programming,” The Journal of Analysis System and Research of Operations, nomor 6 (2016): II-1.

Keputusan Kepala Staf Angkatan Laut Nomor Kep / 3203 / IX / 2023 tanggal 25 September 2023 tentang Rencana Kerja TNI Angkatan Laut Tahun 2024, pasal 1.

Ohta Deris, Omatu, “Ship Maintenance Schedulling By Genetic Algorithm and Constrain-Based Reasoning,” European Journal of Operational Research, (1999), 502.

Guobiao Cai Tao Chen, Jiawen Li, Ping Jin, “Reusable Rocket Engine Preventive Maintenance Scheduling Using Genetic Algorithm,” Reliability Engineering & System

Safety,(2013), 60.

Cyrus K Anderson, “Optimization of Continous Maintenance Availability Scheduling” (2014), 15.

Dong-Ho Lee Hun Go, Ji-Su Kim, “Operation and Preventive Maintenance Scheduling for Containerships: Mathematical Model and Solution Algorithm,” European Journal of Operational Research 229, no. 3 (2013): 636.

A.W. Labib M. Alardhi, “Preventive Maintenance Schedulling of Multi- Cogeneration Plants Using Integer Programming,” Journal of the Operational Research Society 59(4) (2008): 509.

S. J. Sadjadi Mohsen Ziaee, “Mixed Binary Integer Programming Formulations For the Flow Shop Schedulling Problem. A Case Study: ISD Projects Scheduling,” Elsevier 185, no. 1 (2007): 228.

Gholamreza Shafipour Abdolvahhab Fetanat, “Generation Maintenance Scheduling in Power System Using Ant Colony Optimization for Continous Demains Based 0-1 Integer Programming,” Elsevier 38 (2011):

David Duvivier Tao Wang, Nadine Meskens, “Scheduling Operating Theatres: Mixed Integer Programming vs Constraint Programming,” European Journal of Operation

Research 247, no. 2 (2015): 413.

Neocles Alves Pereira Rodolfo Florence Teixeira Jr, Flavio Cesar Faria Fernandes, “Binary Integer Formulations for Scheduling in

Market-Driven Foundries,” Computer &

Industrial Engineering 59, no. 3 (2010): 435.

Downloads

Published

2025-12-29

How to Cite

MODEL OPTIMASI PENJADWALAN PENUGASAN KRI KOARMADA I DIKORELASIKAN DENGAN LUAS WILAYAH DAN ANGGARAN. (2025). JURNAL ILMIAH KAJIAN KEANGKATANLAUTAN, 7(3), 60-70. https://jurnalseskoal.id/index.php/jikk/article/view/81